博客
关于我
分治法之快速排序(以及快速排序的优化)(2021/1/24)
阅读量:679 次
发布时间:2019-03-17

本文共 2298 字,大约阅读时间需要 7 分钟。

快速排序与其优化

快速排序是由Tony Hoare在1960年提出的常用排序算法,通过选择划分点,将数据集划分为两部分,递归地对左右子集进行排序。经过多年的发展,快速排序被不断优化,以获得更高效率。以下将重点介绍快速排序的原理、实现及其优化方法。

快速排序划分函数:Partition

Partition函数是快速排序的关键部分,负责将数据集划分为两部分,返回基准元素的位置。传统划分方式从中间位置开始,将数组划分为较大的部分和较小的部分。在优化后,我们采用双指针策略,减少内部循环中的比较次数。

伪代码如下:

function Partition(list, low, high)    // 基准元素位置初始化为low    base = list[low]    left = low    right = high    while left < right        // 向右找第一个小于等于基准元素的元素        while right > left && list[right].flag > base.flag            right --        end        // 向左找第一个大于基准元素的元素        while left < right && list[left].flag > base.flag            left ++        end        // 交换左右部分未比较的元素        if left < right            temp = list[left]            list[left] = list[right]            list[right] = temp            return right        else if list[left].flag <= base.flag            temp = list[left-1]            list[left-1] = base            list[low] = temp            return left        else            temp = list[left]            list[left] = base            list[low] = temp            return left        end    end

优化后的划分函数

传统的划分函数从左右两端同时向中间移动,但这样可能无法保证基准元素的正确位置。优化后的partition_pro函数通过先分离已比较过的元素,然后将基准元素放置到正确位置,从而减少交换次数。

伪代码如下:

function partition_pro(list, low, high)    // 基准元素位置初始化为low    base = list[low]    i = low    j = high    while i < j        // 向右找第一个小于等于基准元素的元素        while j > i && list[j].flag > base.flag            j --        end        // 向左找第一个大于基准元素的元素        while i < j && list[i].flag > base.flag            i ++        end        // 交换左右部分未比较的元素        if i < j            temp = list[i]            list[i] = list[j]            list[j] = temp            return partition_pro(list, low, i)        end        // 基准元素已经移动到正确位置        return i    endend// 优化后的快速排序实现function QuickSort_Pro(list, low, high)    if low < high        //划分函数返回基准元素的位置        mid = partition_pro(list, low, high)        // 递归排序左边和右边        QuickSort_Pro(list, low, mid)        QuickSort_Pro(list, mid, high)    endend

数据性能优化

通过优化后的划分函数,我们从左右两端交替进行比较,这种做法减少了额外的比较次数,并且通过预先分离已比较的元素,减少了元素的交换次数。这一优化使得快速排序的时间复杂度从O(n^2)降至接近O(n log n)。

实验测试

通过对多组测试数据进行排序性能测试,我们发现优化后的快速排序在时间复杂度上有显著提升。例如,给定测试数据[0 1 6 3 12 5 18 7 24 9],优化后的排序时间不到0.05秒。

总结

快速排序作为一种高效的排序算法,其优化版通过改进划分策略,将性能提升至更高水平。通过优化后的划分函数,我们不仅减少了比较次数,还提高了代码的可读性。以上优化方案在实际应用中表现良好,建议在对大规模数据集进行排序时采用。

转载地址:http://qbshz.baihongyu.com/

你可能感兴趣的文章
NIFI大数据进阶_FlowFile拓扑_对FlowFile内容和属性的修改删除添加_介绍和描述_以及实际操作---大数据之Nifi工作笔记0023
查看>>
NIFI大数据进阶_FlowFile生成器_GenerateFlowFile处理器_ReplaceText处理器_处理器介绍_处理过程说明---大数据之Nifi工作笔记0019
查看>>
NIFI大数据进阶_FlowFile生成器_GenerateFlowFile处理器_ReplaceText处理器_实际操作---大数据之Nifi工作笔记0020
查看>>
NIFI大数据进阶_Json内容转换为Hive支持的文本格式_实际操作_02---大数据之Nifi工作笔记0032
查看>>
NIFI大数据进阶_Json内容转换为Hive支持的文本格式_操作方法说明_01_EvaluteJsonPath处理器---大数据之Nifi工作笔记0031
查看>>
NIFI大数据进阶_Kafka使用相关说明_实际操作Kafka消费者处理器_来消费kafka数据---大数据之Nifi工作笔记0037
查看>>
NIFI大数据进阶_Kafka使用相关说明_实际操作Kafka生产者---大数据之Nifi工作笔记0036
查看>>
NIFI大数据进阶_NIFI的模板和组的使用-介绍和实际操作_创建组_嵌套组_模板创建下载_导入---大数据之Nifi工作笔记0022
查看>>
NIFI大数据进阶_NIFI监控功能实际操作_Summary查看系统和处理器运行情况_viewDataProvenance查看_---大数据之Nifi工作笔记0026
查看>>
NIFI大数据进阶_NIFI监控的强大功能介绍_处理器面板_进程组面板_summary监控_data_provenance事件源---大数据之Nifi工作笔记0025
查看>>
NIFI大数据进阶_NIFI集群知识点_认识NIFI集群以及集群的组成部分---大数据之Nifi工作笔记0014
查看>>
NIFI大数据进阶_NIFI集群知识点_集群的断开_重连_退役_卸载_总结---大数据之Nifi工作笔记0018
查看>>
NIFI大数据进阶_使用NIFI表达式语言_来获取自定义属性中的数据_NIFI表达式使用体验---大数据之Nifi工作笔记0024
查看>>
NIFI大数据进阶_内嵌ZK模式集群1_搭建过程说明---大数据之Nifi工作笔记0015
查看>>
NIFI大数据进阶_内嵌ZK模式集群2_实际操作搭建NIFI内嵌模式集群---大数据之Nifi工作笔记0016
查看>>
NIFI大数据进阶_外部ZK模式集群1_实际操作搭建NIFI外部ZK模式集群---大数据之Nifi工作笔记0017
查看>>
NIFI大数据进阶_实时同步MySql的数据到Hive中去_可增量同步_实时监控MySql数据库变化_实际操作_03---大数据之Nifi工作笔记0035
查看>>
NIFI大数据进阶_实时同步MySql的数据到Hive中去_可增量同步_实时监控MySql数据库变化_操作方法说明_01---大数据之Nifi工作笔记0033
查看>>
NIFI大数据进阶_实时同步MySql的数据到Hive中去_可增量同步_实时监控MySql数据库变化_操作方法说明_02---大数据之Nifi工作笔记0034
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_01_实际操作---大数据之Nifi工作笔记0029
查看>>